1 research outputs found

    Safe and Quasi-Optimal Autonomous Navigation in Environments with Convex Obstacles

    Full text link
    We propose a continuous feedback control strategy that steers a point-mass vehicle safely to a destination, in a quasi-optimal manner, in sphere worlds. The main idea consists in avoiding each obstacle via the shortest path within the cone enclosing the obstacle and moving straight toward the target when the vehicle has a clear line of sight to the target location. In particular, almost global asymptotic stability of the target location is achieved in two-dimensional (2D) environments under a particular assumption on the obstacles configuration. We also propose a reactive (sensor-based) approach, suitable for real-time implementations in a priori unknown 2D environments with sufficiently curved convex obstacles, guaranteeing almost global asymptotic stability of the target location. Simulation results are presented to illustrate the effectiveness of the proposed approach.Comment: arXiv admin note: substantial text overlap with arXiv:2302.1230
    corecore